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Electronic structure of dense plasmas by x-ray scattering 

G. Gregori,* S. H. Glenzer,* F. J.  Rogers,* S. M. Pollaine,* D. H. FToula,* C. 
Blancard,t G. Faussurier,t P. Renaudin,t S. Kuhlbrodt,t R. Redmer,t and 0. L. Landen* 

(Dated: October 7, 2003) 

We present an improved analytical expression for the x-ray dynamic structure factor from a dense 
plasma which includes the effects of weakly bound electrons. This result can be applied to describe 
scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that 
can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately 
coupled systems. We use our theory to interpret x-ray scattering experiments from solid density 
carbon plasma and to extract accurate measurements of electron temperature, electron density and 
charge state. We use our experimental results to validate various equation-of-state models for carbon 
plasmas. 

I. INTRODUCTION 

X-ray scattering of solid density plasmas has recently 
been proven a successful technique for the characteri- 
zation of low-Z warm and dense states of matter [l- 
31. In particular, it was shown that by extending the 
theory of spectrally resolved Thomson scattering to the 
hard x-ray regime, accurate measurements of the elec- 
tron temperature, electron density and ionization state 
can be obtained. In this respect, comparison of the ex- 
perimental results with equation of state (EOS) models 
has started revealing important insights on the micro- 
scopic electronic state of solid density beryllium plasmas 
[2]. In this paper, we present a generalization of the tech- 
nique to higher Z materials, thus allowing the study of 
basic plasma parameters and transport properties of a 
vast range of plasma regimes, as the ones created in high 
energy density experiments relevant for inertial confine- 
ment fusion (ICF) [4] and found in the interior of stars 
and planets. 

The x-ray dynamic form factor, which is the fundamen- 
tal quantity describing the scattering cross section, con- 
tains three major contributions that arise from scatter- 
ing from free electrons, weakly bound and tightly bound 
electrons. The first term is usually described within the 
random phase approximation (RPA) [5, 61 and it refers 
to photon scattering from density fluctuations of the free 
electrons in the plasma. During the process, energy is ex- 
changed from the photons to the electrons, and the scat- 
tered photons are downshifted in energy by the Comp- 
ton effect. For weakly bound electrons the incident x-ray 
photons have a certain probability to transfer a portion 
of their energy and momentum to the electrons, result- 
ing in the appearance of a secondary inelastic scattering 
feature in the spectrum of the scattered radiation that 
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overlaps with the free electron one. The third term de- 
scribes photon scattering from tightly bound electrons. 
In this case, electrons cannot be excited from deep states 
into the continuum, so the photon momentum is shared 
with the ion and the photons are elastically scattered. 

Thus, the interplay of the scattering from all of these 
terms: free, tightly bound and weakly bound electrons, 
provides a unique method for a full characterization of 
the electronic state of the dense plasma. The number of 
valence (or delocalized) electrons can be directly inferred 
from the experimental spectra for the experimental con- 
ditions of this work, as well as electron temperature and 
density, providing important EOS model validation. We 
will further discuss this point using carbon as an exam- 
ple. By extracting carbon EOS data from experimental 
x-ray scattering spectra from solid density carbon plas- 
mas, we can directly test various ionization balance mod- 
els of solid density plasmas. 

This paper is structured as follows. In section $11 we 
will present the derivation of the scattering cross section 
including all the relevant contributions as well as correc- 
tions for strongly collisional and high density materials. 
Section $111 will be devoted to  the description of the x-ray 
scattering experiments on carbon solids and their inter- 
pretation. Concluding remarks will be drawn in section 
SIV- 

11. THEORY 

Following the discussion in Ref. [l], we describe the 
scattering from a uniform plasma containing N ions per 
unit volume. If Z A  is the nuclear charge of the ion, the 
total number of electrons per unit volume in the sys- 
tem, including free and bound ones, is Z A N .  Let us 
now assume we probe such a system with x-rays of fre- 
quency wo such that b o  >> El,  with EI the ionization 
energy of any bound electron, i .e.,  the incident frequency 
must be large compared to any natural absorption fre- 
quency of the scattering atom, which allows us to ne- 
glect resonant scattering. During the scattering process, 
the incident photon transfers momentum tik and energy 
b = b o  - to the electron, where w1 is the frequency 
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of the scattered radiation, and in the non-relativistic limit 
(Aw << Awo) accounting for refractive index change: 

with Xo the probe wavelength, 8 the scattering angle, 
wpe = (e2ne/q,m,)1/2 the electron plasma frequency and 
w, = 2rc/Xo the critical frequency. We denote with Z f  
and 2, the number of kinematically free and bound elec- 
trons, respectively. Clearly, Z A  = 22 + 2,. Here 2, 
includes both tightly bound and weakly bound electrons. 
Since Zf represents electrons which are not bound to any 
single atom, we will also refer to  it as the number of delo- 
calized, or valence, electrons. Following the approach of 
Chihara 17, 81 the scattering cross section is described in 
terms of the dynamic structure factor of all the electrons 
in the plasma: 

The first term in Eq. (2) accounts for the density corre- 
lations of electrons that dynamically follow the ion mo- 
tion. This includes both the bound electrons, represented 
by the ion form factor fr( lc) ,  and the screening cloud of 
free (and valence) electrons that surround the ion, repre- 
sented by q ( k )  [9]. Sii(k, w )  is the ion-ion density correla- 
tion function. The second term in Eq. ( 2 )  gives the con- 
tribution in the scattering from the free electrons that do 
not follow the ion motion. Here, S:,(k, w )  is the high fre- 
quency part of the electron-electron correlation function 
[lo] and it reduces to the usual electron feature [ll, 121 
in the case of an optical probe. Inelastic scattering by 
bound electrons is included in the last term of Eq. (2), 
which arises from bound-free transiJions to the contin- 
uum of core electrons within an ion, Sce(k, w ) ,  modulated 
by the self-motion of the ions, represented by S,(k,w).  

We shall also observe that for typical conditions in 
dense plasmas for ICF experiments, the ions are always 
non-degenerate, since their thermal de Broglie wave- 
length is much smaller than the average interparticle 
distance. On the other hand in the limit T, -+ 0, 
the electrons exhibit degeneracy, and obey the Fermi- 
Dirac distribution. In order to describe the properties 
of a degenerate fluid, we use the approach suggested by 
Dharma-Wardana and Perrot [13] of treating the corre- 
lations by considering a classical Coulomb fluid at some 
effective temperature Tq = T~/(1.3251 - 0.1779&), 
with r, = d/aB (ag is the Bohr radius). The correla- 
tion properties are then calculated at the effective tem- 
perature T,f = (Tz + T')1/2. This corrected temper- 
ature is chosen such that the temperature of an elec- 
tron liquid obeying classical statistics exactly gives the 
same correlation energy of a degenerate quantum fluid 
at T, = 0 obtained from quantum Monte Carlo calcula- 
tions [14]. This approach was shown to reproduce finite- 
temperature static response of an electron fluid, valid 

for arbitrary degeneracy [14]. The reduction to a clas- 
sical electron fluid problem also allows a unified defini- 
tion of the coupling constant and the scattering param- 
eter which is valid at any degeneracy [15]. In partic- 
ular, we then have r = e 2 / 4 m o k ~ T C f d ,  and similarly 
a = l /kXoe = (qhBT,f/e2n,k2)'/2, i e . ,  with the De- 
bye length now calculated at the temperature T,f. In the 
limit T, + 0, we thus have a - l/kXTF. 

Under these conditions, and within the framework 
of the density response formalism for a two compo- 
nent plasma, we can calculate the frequency-integrated 
structure factors using the semi-classical approach sug- 
gested by Arkhipov and Davletov [16], which is based 
on a pseudo-potential model for the interaction between 
charged particles to account for quantum diffraction ef- 
fects ( i e . ,  the Pauli exclusion principle) and symmetry 
[17-191. The resultant expressions for the various static 
structures are thus: 

where r ,s=e (electrons) or i (ions), ne = Zfni = Z f N  
and the temperature has been assumed equal for both 
ions and electrons. Symmetry in the electron-ion inter- 
actions requires Sei(k)  = Sie (k ) .  The coefficients aTS(k) 
are given in Ftefs. [ l ,  161 and corresponds to Fourier trans- 
form of the screened Coulomb potentials. 

Using such a model for the static properties of the 
plasma, we will now present simplified expressions for 
each term in Eq. (2) that are appropriate for low-to-mid 
Z, dense plasma materials. 

A. The ion feature 

We will assume that the plasma has reached a state 
of thermodynamic equilibrium with T, M Ti. This is 
justified since, for dense plasmas, the electron-ion relax- 
ation time scales as - M/2rn,wpe which is typically much 
shorter than the characteristic lifetime of the plasma dur- 
ing an experiment (- 1 ns). Under these conditions, the 
ion motion will exhibit long-time fluctuations at the ion 
plasma frequency and/or sound speed. However, the fre- 
quency scale of those fluctuations is such that we are 
currently unable to experimentally resolve them. In this 
low frequency part of the spectrum, we can thus approx- 
imate S i i ( k ,  w )  = Sii (k)d(w).  The measured width of the 
feature is thus solely determined by the instrument res- 
olution. To complete the description of the first term of 
Eq. (2) we need to calculate the screening charge and 
the ionic form factor. The screening charge is given by 
[71 

(4) 

The ionic form factor, fr(k), is related to the spatial dis- 
tribution of electrons that are truly  bound to the ions, 
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and it can be exactly calculated, for example, following 
the approach described by James [20] in the Hartree-Fock 
self consistent field method. This approach may be quite 
laborious, so, instead, hydrogenic wavefunctions with in- 
clusion of appropriate screening constants for the bound 
electrons have been used to obtain the ionic form factor. 
As shown by Pauling and Sherman [21], this technique is 
fairly accurate for the low-to-mid Z elements with the ad- 
vantage of simple analytical results. Typically, the con- 
tribution from K and L-shell electrons is given by 

(5) 

where 2, = Z A  - zn,l is the effective nuclear charge seen 
by the electron in the quantum state n,l. The screening 
constants zn,l depend on the atomic (or ionic) state of the 
atom and they can be calculated from the prescription of 
Pauling and Sherman [21]. The total ionic form factor is 
thus 

For neutral isolated atoms, the ionic form factor is re- 
placed by the atomic form factor f A ( k ) ,  which is ob- 
tained for various elements, for example, from the nu- 
merical fits given by Waasmaier and Kirfel [22]. How- 
ever, for plasmas and liquid metals, the approximation 
f A ( k )  - f r ( k )  + q(k)  is expected to strictly hold only in 
the limit [23] k + 0 ,  thus giving f A ( k )  = f r ( k )  + q(k )  = 
2, + zf = Z A .  

B. The electron feature 

The free electron density-density correlation function 
that appears in the second term of Eq. (2) can be for- 
mally obtained through the fluctuation-dissipation theo- 
rem [24]: 

where ~ ( k ,  w )  is the electron dielectric response function. 
In the case of an ideal classical plasma, the dielectric re- 
sponse is evaluated from a perturbation expansion of the 
Vlasov equation [25]. The resultant form for the den- 
sity correlation function is then known as the Salpeter 
electron feature [ll]. This approach, however, fails when 
the electrons become degenerate or nearly degenerate as 

quantum effects begin to dominate. Under the assump- 
tion that interparticle interactions are weak, so that the 
nonlinear interaction between different density fluctua- 
tions is negligible, the dielectric function can be derived 
in the random phase approximation (RPA) [5, 61. In 
the classical limit, it reduces to the usual Vlasov equa- 
tion. We shall stress the point that the RPA is derived 
under the assumption r << 1, thus its validity in the de- 
scription of electron correlations in weakly-to-moderate 
coupled systems needs to be verified. 

The RPA form of the dielectric function is (see, 
e.g., Landau et al. [25]) 

E R P A ( ~ , W )  = 1 - v ( k ) x o ( k , w ) ,  (10) 

with v(k) = e2/Eok2 the Fourier transform of the bare 
Coulomb potential, and xo is the density response of the 
non-interacting electron system. Strong coupling effects 
stem from nonlinear correlations between density fluctu- 
ations and are usually described in terms of a dynamic 
local field correction, G ( k , w ) ,  which measures the dif- 
ference between the bare Coulomb interaction and the 
screened response [26] 

and, ~ ( k ,  w )  = 1 - v ( k ) x ( k ,  w ) .  Clearly, the RPA is repro- 
duced for G(k ,w)  = 0. The calculation of the local field 
correction is not an easy task, and some approximations 
are required. In Ref. [15] we have provided an integrated 
approach to obtain local field corrections within the den- 
sity response formalism. In the small cr regime which is 
relevant to the experiments described in this paper, we 
showed that the corrections to the RPA introduced by 
the local field are indeed negligible. 

C. The bound-free feature 

In Ref. [l], we have presented simplified expressions 
for the last term in Eq. (2) for low-Z materials. In those 
cases, the bound-free contribution is small under most ex- 
perimental conditions and it can be neglected. However, 
in the case of carbon, L-shell inelastic scattering needs 
to be included. Differently from the approach followed 
in Ref. [l], we propose a more comprehensive treatment 
of the core electron term based on the impulse approxi- 
mation (IA) [27, 281. The IA assumes that the electron- 
photon interaction occurs on a very short time-scale, so 
the target electron always sees the same nuclear potential 
just before and after the collision. Since only changes in 
the kinetic energy needs to be considered, the electron 
can be treated as free and its final energy depends on 
the projection of the electron’s initial momentum on the 
scattering vector k. Thus, the Doppler broadening of the 
scattered radiation is proportional to the initial momen- 
tum distribution of the electron [29]. In the hydrogenic 
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approximation for the initial wavefunction and momen- 
tum distribution of the electron, the IA profiles for K and 
L-shells assume the form [30] 

1 - 
(1 + 4<2/2,2)4 

+ 

5(1+ 

where, 

As discussed by Eisenberger and Platzman [27], the 
IA is correct to the order of IEB/E,I2, where EB is 
the binding energy and E, is the Compton recoil. For 
our typical experimental conditions the Compton recoil, 
E, = h2k2 J2me - 70 eV and the binding energy of L- 
shell carbon electrons is lE~l  - 11-64 e v  (depending on 
the ionization state), thus errors introduced by the IA 
can be significant. Even if K-shell contribution is typi- 
cally less important than the L-shell one, corrections to  
the IA need to be accounted for K-shell electrons as well. 
The main modification in the IA appears as a shift of 
the peak of feature from the free electron value, an effect 
known as the Compton defect (see e.g., [31, 321). Since 
the IA assumes plane waves as the final state for the 
electron, improvement in the model can be obtained by 
using the first Born approximation and hydrogenic wave- 
functions for both initial and final states [27, 33, 341, or 
by a perturbation expansion of the final states [35, 361. 
In our work we will follow the perturbative approach of 
Holm and Ribberfors [36] which gives for the first order 
asymmetric correction to the IA: 

(18) 
with the corrected IA profiles given by Jn,~(<) = JZ,l(<)+ 
JA,l (0. Even if such modified IA expressions already pro- 
vide accurate profiles for the experimental conditions of 
interest, further improvements to the IA can be obtained 

if more realistic wavefunctions (such as Hartree-Fock) are 
used instead of hydrogenic ones (see e.g., [31]). For L- 
shell electrons and atoms in their neutral state, the er- 
ror introduced by the hydrogenic wavefunctions is SlO% 
when compared to Hartree-Fock wavefunctions [37] for 
our typical experimental conditions. Since kaB/ZA 6 1 ,  
additional corrections can be necessary for the K-shell 
electrons if we want to account for scattering events that 
involve a transition from a 1s state to an unoccupied or- 
bital in a Raman-type process [38-401. Considering the 
fact, as we will see shortly, that K-shell scattering is a 
minor effect in the overall spectrum, in this work we will 
regard Raman-type transitions as an higher order cor- 
rection and we will not include them in the core electron 
scattering form factor. 

Bound-free transitions are not energetically allowed if 
energy transfered from the photon to the electron is less 
that the energy of the bound state, Le.,  hu < IEBI. Thus 
the dynamic structure has a cut-off at the ionization en- 
ergy for K and L-shell electrons. Partial bound-free IA 
static structure factors, defined as 

eEo/h 
%,l(k) = 1 Jn,l(<)& - Srn Jn,l(O&, (19) 

eEB / h  eEw/h 

are plotted in Fig. 1, as a function of EBJE, = 
Eghbar2k2/(2m,) for neutral carbon. We have also set 
EB equal to the Compton energy that corresponds to a 
scattering angle B = 130" with a probe energy EO = 4.75 
keV. Since the binding energy EB gives only the position 
of the cut-off in the scattering cross section, the profiles of 
Fig. 1 are self-similar with respect to EB and they can be 
rescaled for different values of the binding energy. Since 
EB for L-shell electrons in significantly smaller than for 
K-shell electrons, we see that a large fraction of the to- 
tal bound-free structure is determined by the electrons 
in the outermost shells. These results are also weakly 
dependent on 2, and similar plots apply for higher ion- 
ization states. 

The total bound-free dynamic structure, as it appears 
in Eq. 2, is thus written as 

with the sum running over all the bound electrons. The 
normalization constant r k  accounts for the possibility of 
coherent scattering [41] and it is given by [20] 

where fn(k) are the partial form factors for each bound 
electron [21] and Cnfn(k) = f~(k). The coefficient B 
in Eq. (20) is only important for very large momentum 
transfer and it is given by the Breit-Dirac formula [20] 



5 

In the high frequency limit, the ion-ion self structure 
is Ss(lc,w) - 6(w),  as ion dynamics remain unresolved 
under our experimental conditions [l]. Profiles of the 
bound-free dynamic structure, sce ( I C ,  w ) ,  for a carbon 
plasma are given in Fig. 2 for different ionization states 
and typical experimental conditions. The carbon is as- 
sumed to be in an amorphous state (foam) with density 
0.72 g/cc. We clearly see in Fig. 2 the cut-off at the 
ionization energy for L-shell electrons, and similarly, for 
K-shell electrons, the cut-off marks the K-shell binding 
energy. 

In the case of very dense plasmas, the potential distri- 
bution of a given ion is influenced not only by its own 
bound electrons but also by the neighboring ions. The 
net effect is a lowering of the ionization potential (con- 
tinuum lowering). Such lowering depends on the total 
number of ions that participate in the modification of the 
potential around a test ion, which, in turn, is a function 
of the screening distance of the Coulomb forces. Stewart 
and Pyatt [42] have calculated the continuum lowering 
using a finite-temperature Thomas-Fermi model which 
reproduces both the classical Debye screening for low 
density plasmas and the ion-sphere correlation length for 
high density coupled systems. In their model, the lower- 
ing of the ionization potential is given by: 

with, 

(23) 

Zj / 'd  (e) 2 

x - -  2 2/3 ' (24) " - 3  [(q)ltl] - 1  

and AD = dEOICgTcf/n,(Zf + l)e2 is the Debye length 
which includes both the electron and the ion response. 
For typical experimental conditions, AEg accounts for 
-30-50% of the ionization energy, thus continuum lower- 
ing strongly shifts the L-shell edges of the bound-free 
dynamic structure. Experimental verification of this 
model for continuum lowering was presented by Bradley 
et al. [43] with time-resolved continuum-edge shift mea- 
surements in laser-shocked plasmas. The efective ion- 
ization energy is thus determined as Eg = E: - AEB,  
where E: is the ionization energy of an isolated atom. 
EL values for L-shell electrons for atoms in different ion- 
ization stages are obtained from tabulated data [44], and 
for K-shell electrons from the fitting formula given by 
Band et al. [45]. 

It is interesting to compare the total scattered power 
by bound and free electrons in the elastic and inelastic 
terms. By integrating over frequencies Eq. (2) we obtain 
the total static structure 

where, 

with, 

and, 

(29) 

The total elastic component of the scattered x-ray radia- 
tion is Sr(IC) and it includes contribution from both free 
and bound electrons. Inelastic scattering by free elec- 
trons and bound electrons is given by the terms S E ( ~ )  
and S c ( k ) ,  respectively. In Fig. 3 we have plotted as a 
function of the charge state the various static structure 
for a carbon plasma, 0.72 g/cc, T, = 20 eV, probed with 
x-rays of energy EO = 4.75 keV at 130' scattering an- 
gle. We see that for Z f s 3 ,  the amount of the scattered 
radiation by bound-free transitions is quite large and it 
must be considered for a correct evaluation of the experi- 
mental profiles, if accurate measurements of the electron 
density, electron temperature and charge state are to be 
performed. 

111. EXPERIMENTAL RESULTS 

We apply the calculation technique discussed in the 
previous section to a dense carbon plasma. We used the 
30-kJ Omega laser facility [46] to produce a homogeneous 
and isochorically heated carbon plasma at solid density, 
and then probed the plasma interior with the Ti He-cy 
x-ray line at 4.75 keV from a secondary laser produced 
plasma. The details of the experimental technique have 
been extensively discussed in Refs. [2, 31. Prior to laser 
heating, the carbon is in an amorphous (foam) state with 
density 0.72 g/cc. Since during the heating and probing 
times the plasma is not globally expanding (see Ref. [3]), 
the initial carbon density sets the ion density to ni = 
3.6 x cm-'. The electron density is then determined 
by the ionization state of the system. Uniform ( in T, 
and ne)  and isochoric heating has been also confirmed 
by both numerical simulations and spectrally integrated 
x-ray framing images of the samples, as shown by Glenzer 
et al. [2]. By changing the number of heating beams, we 
can vary the degree of carbon heating and consequently 
its ionization state. 

In Fig. 4 we have plotted experimental profiles ob- 
tained for two different cases: a strongly heated foam 
and a cold one. The scattered radiation has been col- 
lected at - 130' f 5' scattering angle with a high effi- 
ciency graphite Bragg crystal operated in mosaic focusing 
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mode. This geometry corresponds to a scattering param- 
eter a < 1, thus the scattering is noncollective and the 
spectra of the free electrons directly represent the elec- 
tron velocity distribution function [l]. As an additional 
remark, we notice that for our experimental conditions, 
the electron-electron coupling constant rsl, thus local 
field corrections to the RPA are not important, as pre- 
viously observed. From Fig. 4 we notice an increased 
red wing for the higher temperature foam, indicating a 
higher T, plasma with more free electrons and higher ion- 
ization state. By combining the theory outlined in the 
previous section for the core electrons and by assuming 
that the free electron response can be described within 
the RPA, we can fit the experimental data to obtain T, 
and Z f .  The electron density is then simply given as 
ne = Z f n i ,  as heating is isochoric and the plasma does 
not expand at the probing time. The high temperature 
foam gives 2, = 4.25 and T, = 52 eV, while for the cold 
foam Z f  = 0.26 and T, = 5 eV. As discussed by Glen- 
zer et a2. [2], the errors .in the temperature and density 
measurements for the high temperature foam are 520%. 
This is clearly shown in Fig. 5, where we plot the quality 
of the data fitting as measured by the parameter 

m 

x2 = [AG(k)S(k,Wi) - (30) 
i=l 

where the sum extends to all the m data points, with yi  
the measured intensity at the frequency wi ,  and AG(k) 
is a geometrical factor that accounts for the overall in- 
strument response. The plot in Fig. 5a is obtained by 
arbitrarily varying T, and 2, in the total form factor 
(2). We see that by covering a large parameter space 
in temperature and ionization states, x2 shows a unique 
minimum thus confirming the small errors in the mea- 
surements. 

For the cold foam, the electron plasma is partially de- 
generate (T, - T F )  and the width of the Compton fea- 
ture is only weakly sensitive on the electron tempera- 
ture. Moreover, the Compton profile mainly results from 
bound-free transitions which directly reflects the bound 
electron momentum. Under these conditions, the fitted 
temperature is understood only as an upper limit of the 
actual electron temperature of the degenerate electron 
fluid. Fig. 5b shows the x2 density plot for a range of 
electron temperatures and ionization states. 

Differently from the high temperature case, we now see 
the appearance of two local minima. Physical reasoning, 
however, limits the possible solutions. In the cold exper- 
iment, heating of the carbon foam is very minimal and it 
can only be induced by the probe itself. Comparison with 
numerical simulations suggests that such an effect can- 
not account for more than a few eV's, thus excluding the 
high temperature minimum in the x2 plot. Fig. 5b also 
shows that a typical error in the ionization state value 
is less than f0.5. Differently from the high temperature 
foam, where the red wing of the spectrum is mainly due 
to free electron scattering [3], in the cold foam experi- 
ment, scattering from weakly bound (L-shell) electrons 

represents the dominant contribution to the red wing. 
This is elucidated in the plot of Fig. 6 .  We should also 
note that, since the width of the free electron feature is 
proportional to T;i2 [l], while the width of the bound- 
free feature depends on the bound electron momentum, 
we cannot simply fit the low temperature experimental 
data by assuming a larger ionization state (2,) with no 
bound-free contribution. This, as well, explains the im- 
portance of L-shell electron scattering in determining the 
lineshape. 

Fig. 7 compares the ionization balance us T, with ex- 
perimental data and various EOS models for carbon. The 
third data point, at intermediate T,, was obtained by 
heating the plasma with a lower number of driver beams. 
The models compared in the figure are the activity ex- 
pansion method (ACTEX) [47, 481, the partially ionized 
plasma (PIP) model [49, 501 and SCAALP, a density 
functional plasma model [51]. In the ACTEX theory, 
all possible interactions between plasma constituents are 
calculated including the screening of the bound states. 
For large densities, the classical Debye-Huckel (Yukawa) 
potential is replaced by a screened potential which has a 
cut-off for distances that approach the thermal de Broglie 
wavelength, in order to mimic quantum mechanical ef- 
fects ( i e . ,  exchange and symmetry). This approach al- 
lows the calculation of de-localized electrons, i.e., the 
number of electrons that are no longer bound to a single 
ion. These electrons are free or weakly bound, like the 
conduction electrons in a metal. For our conditions, these 
electrons give rise to the Compton downshifted electron 
feature of the x-ray scattering spectrum. The PIP model 
is based on the self-consistent solution of Saha-like equa- 
tions for each ionization stage together with the calcula- 
tion of appropriate chemical potentials for electrons and 
ions. This also allows the inclusion of high density effects 
by using corrected chemical potentials for the continuum 
lowering. SCAALP is based on the density functional 
theory for plasmas, where electronic structure and ionic 
distribution are determined self-consistently. The plasma 
is considered as an effective classical system of virtual 
neutral particles (neutral pseudo-atom, NPA) interact- 
ing via an interatomic effective potential 4 ( ~ ) .  Electrons 
of the NPA satisfy a Schrodinger equation with an effec- 
tive central symmetric potential V,,f(r). Both V,,f. and 
4 are determined by the electronic structure and the ionic 
distribution of the plasma. Polarization and correlation 
effect of the continuum electrons are taken into account, 
as well as a part of the exchange interaction within both 

Results from these models, assuming different values 
for the carbon density, are plotted in Fig. 7. The compar- 
ison with the experimental data shows good agreement 
with SCAALP at all densities, even if some differences 
still remain especially for the high temperature case. The 
PIP model also gives reasonably good agreement with 
the data at all densities, but it seems to over-predict the 
ionization state in the mid-temperature regime. In this 
regime, the influence of quantum mechanical corrections 

v e f f ( T )  and 4 ( ~ ) .  
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to the ideal Saha equations used in various approaches is 
important. ACTEX shows a similar trend to SCAALP 
for the low density simulation, but, in the higher density 
case, predicts a low temperature foam which has -2 elec- 
trons in the conduction band. This transition to a metal- 
lic state for carbon at high density are not reproduced by 
the other models at this density. Our experimental data 
at low T, show an insulating behavior for carbon at high 
density. 

From this discussion, we see that currently available 
EOS models for carbon exhibit different behavior in the 
temperature range 0-50 eV, which span the range from 
fully degenerate to classical plasmas. X-ray scattering 
thus provides an accurate experimental tool for valida- 
tion and improvement of EOS codes, as shown in Fig. 7. 

and degenerate systems. We then show that the RPA is 
accurate for the plasma regimes covered in experiments 
performed at the Omega laser facility. We have fitted our 
model to the experimental data in order to extract accu- 
rate values for electron temperature and ionization state 
for a solid density carbon plasma. This has allowed the 
comparison various ionization balance models with our 
data, thus enabling a direct validation of EOS theories 
for a carbon plasma in a regime which cover the transition 
between a degenerate to classical fluid. Our result are of 
interest for ICF research as well as planetary science since 
they indicate that matter under extreme conditions, as 
the one found in fuel pellet during compression or in the 
interior of planets, can now be investigated with good 
accuracy. 
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FIG. 1: Partial bound-free IA static structure factors cn,2(IE) 
for neutral carbon. E, is the Compton recoil. 
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FIG. 2: (color) Calculated bound-&= dynamic structures, 
&c(A,w), for a carbon plasma with density 0.72 g/cc at 130° 
scattering angle. The probe energy is EO = 4.75 keV. The 
ionization energy is corrected for continuum lowering. 
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FIG. 3: (color) Static structures obtained 5ns a carban plssma 
with density 0.72 g/cc and Td = 20 eV. The probe rrdi&ion 
is Eo = 4.75 keV and the scaftering an@ is 1300, 
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rib. 4: (color) Experimental x-rw scattering data from a 
heated carbon foam (0.72 g/cc) and a d d  (unheated) carbon 
foam. The raw data, as meamued by the detector am shown 
on the left side. Lineouts and beat fits are reported on the 
right panel. The probe radiation is the Ti He-cr line at 4.75 
keV, and the scattered x-rays are collected at 4 3 O o f S 0  scat- 
tering angle. Best fit parameters and corresponding spectra 
are also pbtted in the figure. For the high temperature foam, 
a = 0.17, TF = 10.4 eV, and I' = 0.2; while Iw the cold Soam 
a = 0.13, TF = 1.6 eV, snd r = 0.9. 

N- 

1.1 

a1 

FIG. 5: x2 mappins (log scale). (a) high tempemture car- 
bon foam erpSrirnernt. && 5t eomspmb to T. = 52 eV 
d 2, 4.25. (b) old ~ b a u  dwm -t. Best fit 
carrap& to Z 5 eV and Zf =0.26. 
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FIG. 6: Spectrum of the unheated foam with separated con- 
tributions from each diEerent scattering mechanism. Con- 
lution with instrument response k added each terms. The 
probe radiation is the Ti HBQ line at 4.75 keV, and the scat- 
tered x-rays are collected at -130° f 5' scattering angle with 
best fit parameters T. < 5 eV and Zf = 0.26. The ionization 
energy for isolated neutral carbon is @B = 11 eV fnr 1-w 
electrons and Ji$B = 286 eV for K-sheU electrons. 
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FIG. 7 (color) Temperature-ionization diagram along with 
the results of the x-ray scattaing measurements and variow 
EOS models. ACTEX with carbon density p = 0.67 g/cc 
(solid green line), ACTEX with carbon density p = 0.47 g/cc 
(dotted &re~n line), PIF' with carbon density p = 0.67 g/cc 
( d i d  red line), PIP with carbon density p = 0.2 g/cc (dotted 
red line), SCAALP with carbon demity p = 0.67 g/cc (solid 
blue line), and SCAALP with carbon density p = 0.2 g/cc 
(dotted blue line) 




